

Bayesian Inference of Time-Varying Transit OD Matrices from Boarding and Alighting Counts

Xiaoxu Chen

Department of Civil Engineering
McGill University
October 11, 2024

Xiaoxu Chen

Zhanhong Cheng

Lijun Sun

Motivation

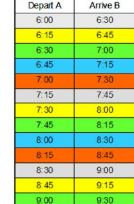
- What is OD matrix?
 - An OD matrix represents the number of passengers traveling between a pair of stops along a bus route
 - ✓ Aggregated manner (e.g., overall demand in morning peak hours)
 - ✓ Individual bus-journey level (time-varying)

1	2	3	4	→ 5

	D1	D2	D3	D4	D5
01	0	2	3	1	1
O2	0	0	4	2	1
О3	0	0	0	2	1
04	0	0	0	0	2
O5	0	0	0	0	0

- Why do we need OD matrix?
 - OD matrices are important input for transit service planning, management, and operations.

Bus route design



Scheduling



Fleet allocation

Advanced data collection techniques (AFC and APC) to obtain OD matrices

Automatic fare collection (AFC) system

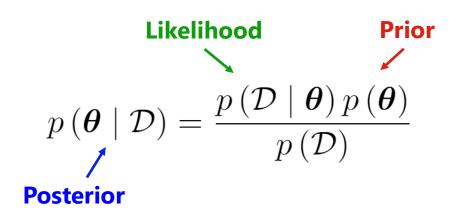
- For systems that require both tapping-in and tapping-off
 - Trip information is generated (time, origin, destination, bus_id)
 - Only available in a few cities around the world (e.g., Singapore)
- For systems that require only tapping-in
 - Partial trip information (time, origin, destination, bus_id)
 - Destination inference models (e.g., with trip chain assumptions)

Automatic passenger counting (APC) system

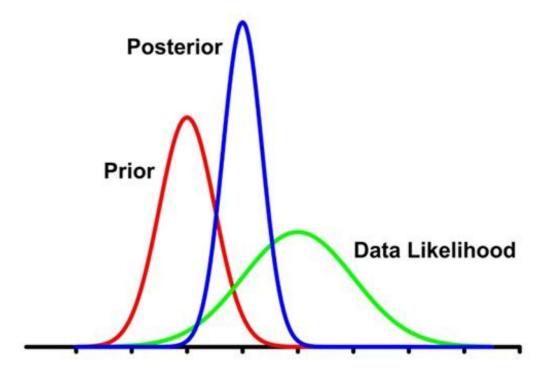
- Europe, North America
- Aggregated boarding/alighting counts
- No individual trip information
- The focus of this talk

Bayesian concept

Bayes' theorem: combine prior knowledge and observations



$$p(\mathbf{y}^* \mid \mathcal{D}) = \int p(\mathbf{y}^* \mid \boldsymbol{\theta}) p(\boldsymbol{\theta} \mid \mathcal{D}) d\boldsymbol{\theta}$$

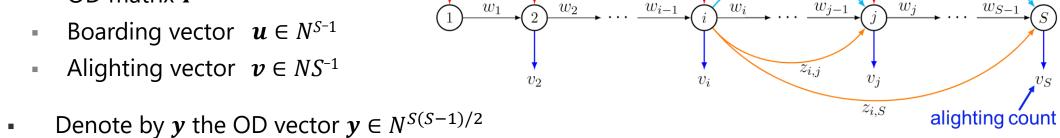


Research question

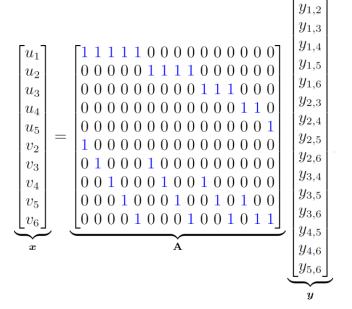
Estimate OD matrix for each bus journey from boarding/alighting counts

boarding count

- For each bus:
 - OD matrix Y



- We have $x = \begin{pmatrix} u \\ v \end{pmatrix} = Ay$
- Question: estimate the distribution p(y)
- This is a typical **inverse problem**:
 - Not identifiable when $S \ge 4$
 - There are a large # of feasible solutions



0	$1 \longrightarrow 2 \longrightarrow 3 \longrightarrow 4 \longrightarrow 5$								
		D1	D2	D3	D4	D5	B _i		
	01	0	?	?	?	?	7		
	O2	0	0	?	?	?	7		
	О3	0	0	0	?	?	3		
	04	0	0	0	0	?	2		
	O5	0	0	0	0	0	0		
	A _j	0	2	7	5	5			

 w_{S-1}

 $y_{i,S} \leftarrow \mathsf{OD} \mathsf{flow}$

 u_{i}

 $y_{i,j}$

Industry practice

- Iterative Proportional Fitting (IPF)
- Morning/afternoon rush hours, off-peak hours (total boarding and alighting)
- "Onboard survey": asking people their origin-destination and purpose for the trip
- Use to obtained matrix for that bus as a "seed" matrix, scaling the "seed" matrix to match the data
- Limitation: "biased" seed, and results should NOT be deterministic

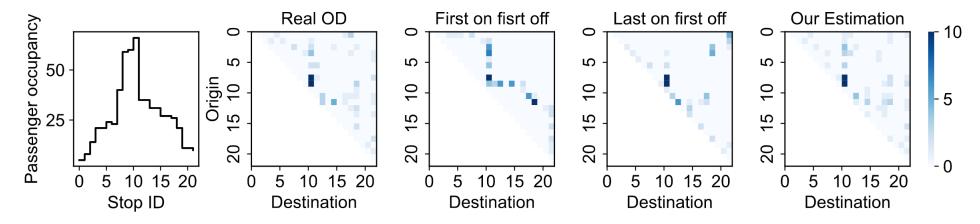


Figure 1 Illustration of the uncertainty of OD solution.

Solution for a single bus

- Current literature: Hazelton (2010)
- Assuming each entry (count) follows a Poisson distribution
 - With demand "rate" λ^n for bus n
 - The likelihood is

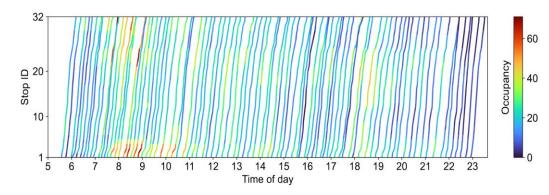
$$L(\boldsymbol{\lambda}^{n}) = p(\boldsymbol{x}^{n} | \boldsymbol{\lambda}^{n}) = \sum_{\boldsymbol{y}^{n}} p(\boldsymbol{x}^{n} | \boldsymbol{y}^{n}, \boldsymbol{\lambda}^{n}) p(\boldsymbol{y}^{n} | \boldsymbol{\lambda}^{n})$$
$$= \sum_{\boldsymbol{y}^{n} \in \mathcal{H}(\boldsymbol{x}^{n})} p(\boldsymbol{y}^{n} | \boldsymbol{\lambda}^{n})$$

i j	1	2	3	4	5
1		1.5	2.0	1.8	5.1
2			4.9	1.5	2.5
3				0.9	5.2
4					2.4
5					

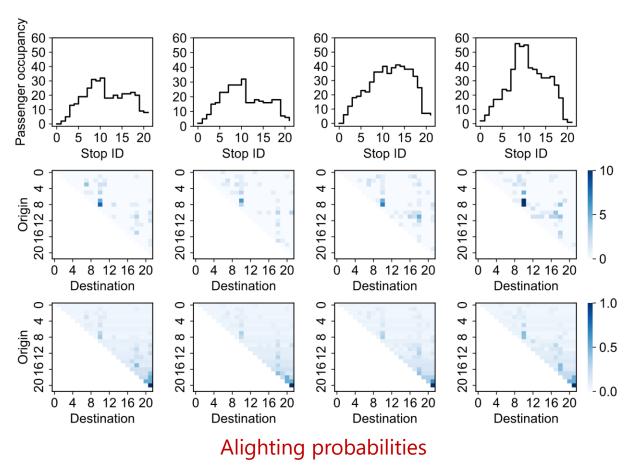
- Computing the likelihood: Enumerating all potential solutions
- Assuming all buses share the same "rate" parameter (static model)

For multiple buses

For multiple buses in a day, can we assume λ^n remain the same?



- Both demand and supply are time-varying
- λ^n vary substantially even for consecutive buses
- Anything in common among these buses?
- Smooth alighting probability



A Bayesian model

- Important prior knowledge
 - We expect alighting probability to vary, but it should vary smoothly over time
 - In other words, the passengers that take two consecutive vehicles (veh i and veh i+1) at the same stop should have similar destination profiles

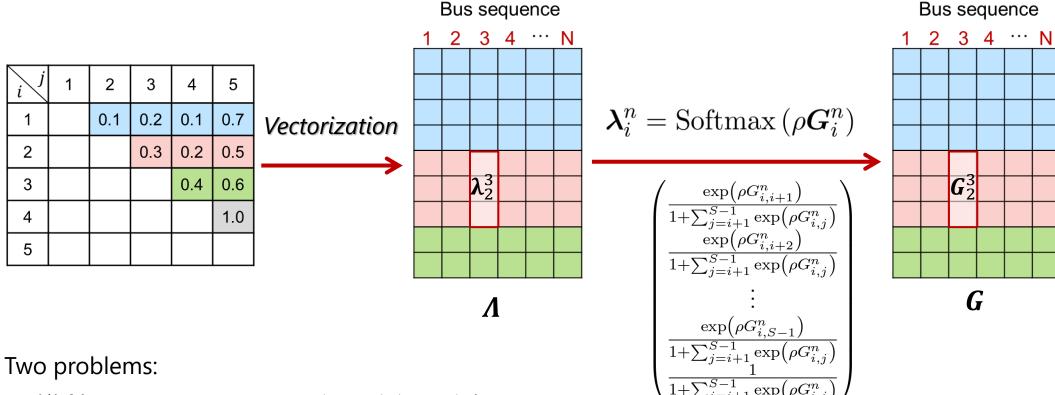
Our solution

- Instead of modeling λ^n , we model the probability $p_i^n(d=j)$
- Each row of OD matrix represents a multinomial distribution (a simplex: $\sum_{i} p_{i}^{n} (d = j) = 1$)
- Replace the Poisson likelihood with Multinomial likelihood

i j	1	2	3	4	5
1		0.1	0.2	0.1	0.7
2			0.3	0.2	0.5
3				0.4	0.6
4					1.0
5					

A Bayesian model

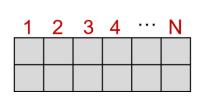
Parameterization—Time-varying multinomial probability



- (1) Numerous parameters: $(S-1)(S-2)/2 \times N$
- (2) The columns of **G** should vary smoothly from 1 to N

A Bayesian model

Solutions: Problem (1) — Matrix factorization

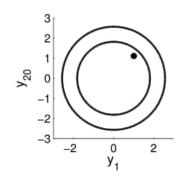


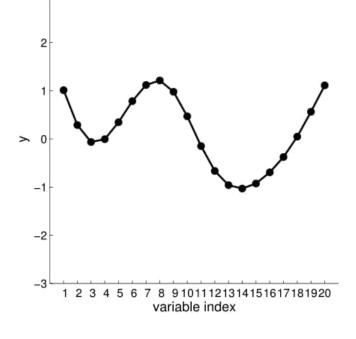
 $\mathbf{x} \quad \mathbf{\Psi}^{ op}$ Temporal factor matrix

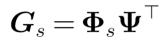
Problem (2) — Gaussian process

$$\psi_d \sim \mathcal{GP}(\mathbf{0}, \mathbf{K}_d), \quad d = 1, \dots, D,$$

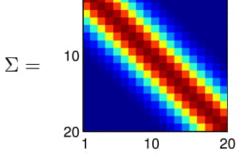
Gaussian process $f(\boldsymbol{x}) \sim \mathcal{GP}\left(m(\boldsymbol{x}), k\left(\boldsymbol{x}, \boldsymbol{x}'\right)\right)$







Mapping factor matrix



Bayesian inference

MCMC sampling procedure:

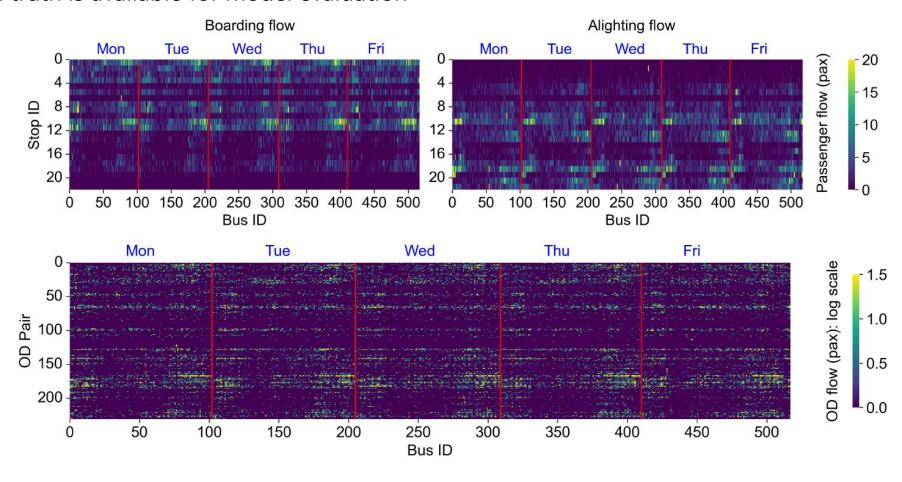
- Sample \mathcal{Y} from $p(\mathcal{Y} \mid \Theta, \mathcal{X})$ with Metropolis-Hastings sampling.
- Sample Φ from $p(\Phi \mid \Psi, \rho, \mathcal{Y})$ with Elliptical slice sampling.
- Sample Ψ from $p(\Psi \mid \Phi, \rho, \mathcal{Y})$ with Elliptical slice sampling.
- Sample ρ from $p(\rho \mid \Psi, \Phi, \mathcal{Y})$ with slice sampling.

Approximating posterior distribution of OD vectors:

$$p(\mathbf{y}^{n} \mid \mathcal{X}, \mathbf{t}) = \int p(\mathbf{y}^{n} \mid \mathbf{x}^{n}, \Theta) p(\Theta \mid \mathcal{X}, \mathbf{t}) d\Theta$$
$$\approx \frac{1}{M} \sum_{m=1}^{M} p(\mathbf{y}^{n} \mid \mathbf{x}^{n}, \Theta^{(m)}).$$

Experiments

- AFC data from three bus routes: short (22 stops), medium (40 stops), and long (72 stops)
- Ground truth is available for model evaluation



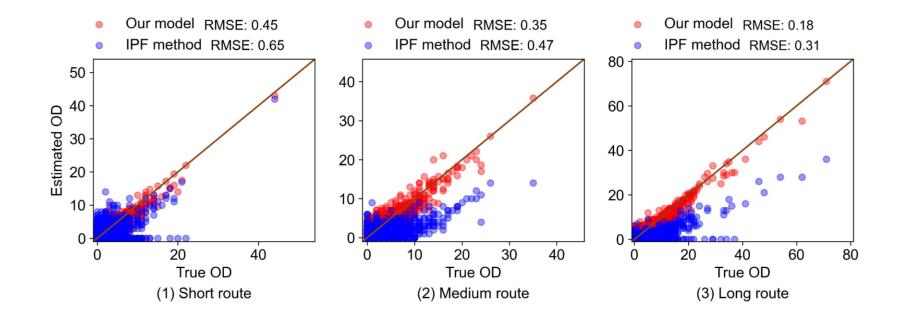
Experiment setting

- Obtain boarding/alighting counts based on the true OD matrices and then apply the model to infer OD matrices based on the counts.
- Compare the performance of our model with the widely used Iterative Proportional Fitting (IPF) method.
- Implement the developed MCMC algorithm and run a total of 100,000 iterations to sample the model parameters.
- Take the first 95,000 iterations as "burn-in" and the last 5000 iterations to approximate the posterior distributions.

Results

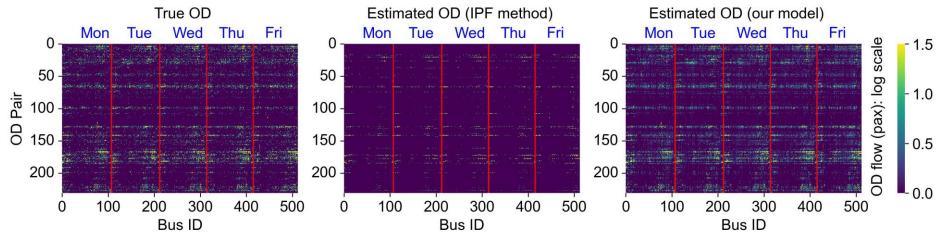
Table 1 Log-likelihood of different models for OD matrices estimation.

	1	Static model					
	1			D=1	D=2	D=4	D=6
Short route	Mean Standard deviation	-35328.77 98.63		-34829.07 86.65	-33728.49 79.14	-33064.69 86.75	-32874.45 85.54
Medium route	Mean Standard deviation	-63599.00 165.46		-62915.15 150.24	-62141.88 134.89	-61652.34 156.80	-61539.26 123.00
Long route	Mean Standard deviation	-47449.85 158.43		-47078.95 139.10	-46179.38 134.59	-45722.42 134.88	-45722.37 124.12

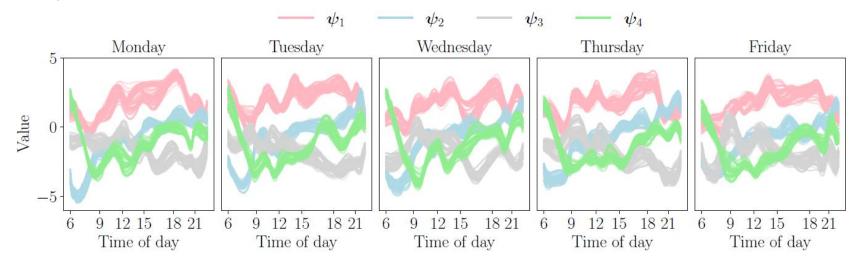


Results

True and estimated OD vectors for all buses

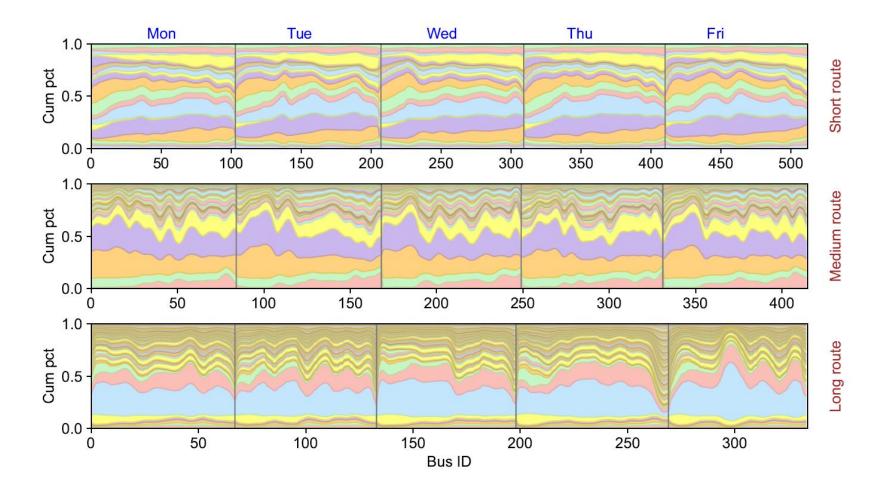


- Posterior samples of $oldsymbol{\Psi}$ with rank D=4



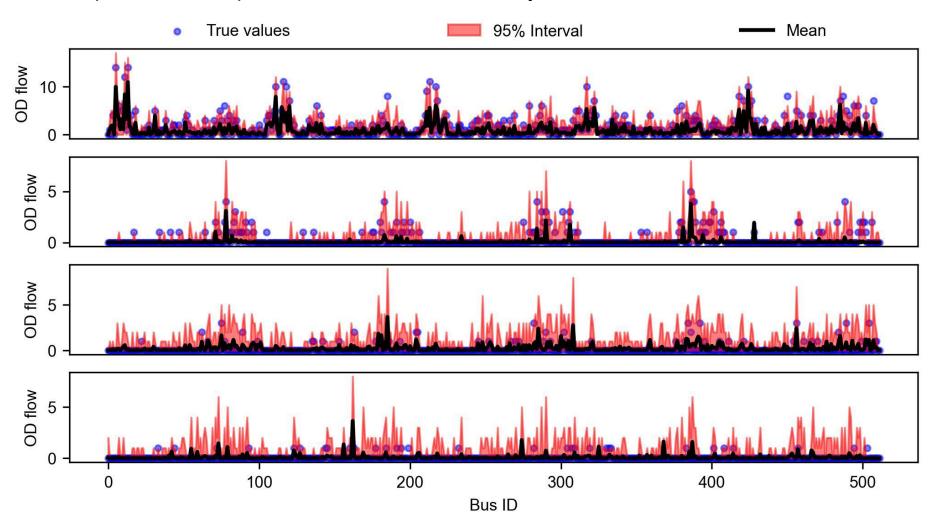
Results

- Temporal patterns of $\, oldsymbol{\lambda}_1 \,$ for different bus routes



Results: uncertainty quantification

4 selected OD pairs as examples, flow varies substantially across buses



Summary

- Estimate transit OD matrices at the bus-journey level from boarding/alighting counts at bus stops.
 (It is a challenging linear inverse problem!)
- We model the alighting probabilities and assume they are smoothly time-varying.
- In this inverse problem, we use two priors
 - The "low-rank" prior
 - Using factor model to reduce the dimensionality in parameters
 - The "GP" prior
 - Using the Gaussian process to model the time-varying parameters
- Our proposed model is evaluated in the real-world data and the estimation is good.

Thank You Any Questions?

Xiaoxu Chen
Postdoc researcher
Department of Civil Engineering
McGill University

xiaoxu.chen@mcgill.ca

